Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 58(17): 11599-11605, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31424206

RESUMO

The phase separation observed at low temperature (below circa 600 K) in the U1-yCeyO2-x system and for values of y between roughly 0.34 and 0.5 purportedly involves fluorite structures only. However, for y values above 0.5, an oxygen-deficient C-type bixbyite is also reported. In this work, the phase separation in U0.54Ce0.46O2-x has been reexamined using X-ray and neutron diffraction. Below a critical temperature, the existence of two fluorite related structures in the miscibility gap is confirmed: a stoichiometric U0.54Ce0.46O2 phase and an oxygen-deficient U0.54Ce0.46O2-x phase. Although the former is indeed a fluorite, we show that the other end-member phase has a C-type bixbyite structure. This would suggest that the oxygen-deficient phase can be described as a bixbyite over the entire cerium composition range.

2.
Sci Rep ; 7(1): 3727, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623293

RESUMO

Intuitively scientists accept that order can emerge from disorder and a significant amount of effort has been devoted over many years to demonstrate this. In metallic alloys and oxides, disorder at the atomic scale is the result of occupation at equivalent atomic positions by different atoms which leads to the material exhibiting a fully random or modulated scattering pattern. This arrangement has a substantial influence on the material's properties, for example ionic conductivity. However it is generally accepted that oxides, such as defect fluorite as used for nuclear waste immobilization matrices and fuel cells, are the result of disorder at the atomic scale. To investigate how order at the atomic scale induces disorder at a larger scale length, we have applied different techniques to study the atomic composition of a homogeneous La 2 Zr 2 O 7 pyrochlore, a textbook example of such a structure. Here we demonstrate that a pyrochlore, which is considered to be defect fluorite, is the result of intricate disorder due to a random distribution of fully ordered nano-domains. Our investigation provides new insight into the order disorder transformations in complex materials with regards to domain formation, resulting in a concord of chemistry with crystallography illustrating that order can induce disorder.

3.
Rev Sci Instrum ; 83(6): 063104, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755612

RESUMO

Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Fluorescência , Síncrotrons/instrumentação , Espectroscopia por Absorção de Raios X/instrumentação , Espectroscopia por Absorção de Raios X/métodos
4.
J Synchrotron Radiat ; 19(Pt 3): 323-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22514165

RESUMO

The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.


Assuntos
Cristalografia por Raios X/métodos , Muramidase/química , Animais , Calibragem , Galinhas , Fótons , Síncrotrons/instrumentação
5.
J Synchrotron Radiat ; 17(4): 486-95, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20567081

RESUMO

XPAD3S is a single-photon-counting chip developed in collaboration by SOLEIL Synchrotron, the Institut Louis Néel and the Centre de Physique de Particules de Marseille. The circuit, designed in the 0.25 microm IBM technology, contains 9600 square pixels with 130 microm side giving a total size of 1 cm x 1.5 cm. The main features of each pixel are: single threshold adjustable from 4.5 keV up to 35 keV, 2 ms frame rate, 10(7) photons s(-1) mm(-2) maximum local count rate, and a 12-bit internal counter with overflow allowing a full 27-bit dynamic range to be reached. The XPAD3S was hybridized using the flip-chip technology with both a 500 microm silicon sensor and a 700 microm CdTe sensor with Schottky contacts. Imaging performances of both detectors were evaluated using X-rays from 6 keV up to 35 keV. The detective quantum efficiency at zero line-pairs mm(-1) for a silicon sensor follows the absorption law whereas for CdTe a strong deficit at low photon energy, produced by an inefficient entrance layer, is measured. The modulation transfer function was evaluated and it was shown that both detectors present an ideal modulation transfer function at 26 keV, limited only by the pixel size. The influence of the Cd and Te K-edges of the CdTe sensor was measured and simulated, establishing that fluorescence photons reduce the contrast transfer at the Nyquist frequency from 60% to 40% which remains acceptable. The energy resolution was evaluated at 6% with silicon using 16 keV X-rays, and 8% with CdTe using 35 keV X-rays. A 7 cm x 12 cm XPAD3 imager, built with eight silicon modules (seven circuits per module) tiled together, was successfully used for X-ray diffraction experiments. A first result recently obtained with a new 2 cm x 3 cm CdTe imager is also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...